autoencoder

생성 모델의 한 축을 담당하는 Variational Autoencoder를 이해하기 위해서는, Autoencoder를 그냥 지나칠 수 없습니다. 이번 글에서는 Autoencoder에 대해 이해해 보는 시간을 가져보겠습니다. Autoencoder Autoencoder는 위의 그림과 같은 구조를 가지고 있으며 Encoder, Latent Vector, Decoder 이 3가지의 구성으로 이루어져 있습니다. 해당 모델의 가장 큰 목표는 데이터를 잘 압축하고자 하는 것입니다. 이 3가지의 구성 요소들이 어떻게 데이터를 잘 압축할 수 있도록 해주는지 하나하나씩 살펴보도록 하겠습니다. Autoencoder의 목표는 데이터를 잘 압축하는데에 있다. Encoder Autoencoder에서 Encoder의 역할은 입력된..
이전 포스팅 1.Task : 해당 프로젝트에서 문제정의에 대한 내용을 다룹니다. 2. DataCentric : 주어진 데이터를 살펴보며, 데이터가 가지는 문제점을 찾아내고 인사이트를 얻는 과정입니다. 3. Classification & CAM : 부품 불량을 위해 분류 모델을 학습하고, 신뢰성을 확보하기 위해 CAM기법을 적용해 보는 과정입니다. 4. CAM 대시보드 개발 : 최적의 CAM 시각화를 얻기 위한 실험과 함께 대시보드를 개발하는 과정입니다. [널링 외의 요소] Anomaly Detection 앞서 DataCentric 편에서 압입과 미압입인 데이터에 대해서 살펴보고 그 결과, 정상 데이터만을 활용하는 이상치 탐지 방법론으로 해결하고자 했습니다. 이상치 탐지는 처음 접해보는 task였기에, 서..
wjdrbs51
'autoencoder' 태그의 글 목록