ML

Variational AutoEncoder를 이해하기 위해서는 기존의 머신러닝 관점을 확률론적 관점으로 바라볼 수 있어야 합니다. 해당 글은 이활석님의 오토인코더의 모든것이라는 강연을 보고 정리한 느낌이 되겠습니다. 이번 포스팅에서는 아래의 문구를 이해하는데 초점을 맞추며 내용을 이어갈 계획입니다. 딥러닝 모델을 학습시킨 다는 것은 Maximum Likelihood Estimation 하는 것과 같은 말이다. 기존의 머신러닝 학습 과정 우리가 일반적으로 머신러닝을 처음 공부할 때, 아래와 같은 메커니즘으로 모델이 동작한다는것을 배웁니다. 학습데이터 x를 모델에 입력한다. 입력값 x가 모델 내의 파라미터(Weight and Bias)를 거쳐가며 예측값인 y_pred를 출력해 낸다. 이렇게 얻은 예측값 y_..
이전 포스팅 1.Task : 해당 프로젝트에서 문제정의에 대한 내용을 다룹니다. 2. DataCentric : 주어진 데이터를 살펴보며, 데이터가 가지는 문제점을 찾아내고 인사이트를 얻는 과정입니다. 3. Classification & CAM : 부품 불량을 위해 분류 모델을 학습하고, 신뢰성을 확보하기 위해 CAM기법을 적용해 보는 과정입니다. 4. CAM 대시보드 개발 : 최적의 CAM 시각화를 얻기 위한 실험과 함께 대시보드를 개발하는 과정입니다. [널링 외의 요소] Anomaly Detection 앞서 DataCentric 편에서 압입과 미압입인 데이터에 대해서 살펴보고 그 결과, 정상 데이터만을 활용하는 이상치 탐지 방법론으로 해결하고자 했습니다. 이상치 탐지는 처음 접해보는 task였기에, 서..
이전 포스팅 1.Task : 해당 프로젝트에서 문제정의에 대한 내용을 다룹니다. 2. DataCentric : 주어진 데이터를 살펴보며, 데이터가 가지는 문제점을 찾아내고 인사이트를 얻는 과정입니다. 3. Classification & CAM : 부품 불량을 위해 분류 모델을 학습하고, 신뢰성을 확보하기 위해 CAM기법을 적용해 보는 과정입니다. 최고의 CAM 시각화를 얻어내자 앞선 포스팅에서 분류 모델의 신뢰성을 위해 GradCAM을 적용해 봤습니다. 그 결과, 높은 성능에 대한 신뢰성을 어느 정도 확보할 수 있었죠. 단순히 신뢰성 확보를 위해 CAM을 적용해 본 거지만, 이 시각화 정보를 공장 측에도 제공해 주면 좋겠다는 생각이 문득 들었습니다. 단순히 어떤 불량인지 분류하는 걸 넘어, 불량의 위치정..
wjdrbs51
'ML' 태그의 글 목록