Ai

이미지를 생성해 주는 인공지능이 처음 나왔을 때, 그 퀄리티에 놀란적이 있습니다. 2022년 4월, DALL·E 2가 세상에 공개되었을 땐, 이젠 웬만한 사람이 흉내 낼 수 없는 퀄리티를 보이기도 했습니다. 퀄리티면에서는 사람이 AI를 이기기란 어려운 일이 되어버렸습니다. 하지만 이런 발전에도 불구하고, 사용자의 의도를 정확히 반영하는 것은 여전히 어려운 문제로 남아있습니다. 사용자는 AI에게 프롬프트를 제공할 수 있을 뿐, 그 이후에는 AI가 확률적 알고리즘에 따라 이미지를 생성합니다. 때문에, 매번 다른 이미지를 생성하게 되고, 정확히 사용자가 원하는 그림을 얻기까지는 수많은 노력과 시간이 필요합니다. 한 가지 예시를 보겠습니다. 아래는 Stable Diffusion을 활용해 테니스를 치는 아이언맨을..
이전 포스팅 Task : 해당 프로젝트에서 문제정의에 대한 내용을 다룹니다. DataCentric : 주어진 데이터를 살펴보며, 데이터가 가지는 문제점을 찾아내고 해결방안을 도출하는 과정입니다. 모델의 흐름 불량 검출을 위해 사용한 모델 아키텍처는 위와 같습니다. DataCetric 편에서 말했듯, 널링 내의 요소(찍힘, 밀림, 이중선)와 널링 외의 요소(미압입)로 불량의 기준을 나누었고, 그에 따라 모델의 로직도 2가지로 나뉘게 되었습니다. 이번 포스팅에서는 널링 내의 요소로 찍힘과 밀림, 이중선, 정상을 분류해 내는 내용이 될 것이며, 이 과정에서 GradCAM기법을 사용하여 모델의 신뢰성을 확보하는 내용이 될 것입니다. [널링 내의 요소] Classification 부품 이미지에서 널링 내의 영역을..
안녕하세요 AI를 잘 다루고 싶은 Rimo입니다. 저는 딥러닝, 특히 Computer Vision에 관심이 많은데요, 해커톤이나 개인 프로젝트에서 실전과 같은 문제를 많이 다루고자 합니다. 이번 글에서는 제가 해커톤에서 수상한 내용을 기반으로 부품 불량 검출 모델을 개발한 과정에 대해 정리해 보고자 합니다. 하나의 성능지표를 높이는 데에만 집중했던 기존의 해커톤과는 달리 기획부터 모델링, 성능지표 선정까지 모두 본인이 스스로 진행해야 됐다는 점에서 나름 의미 있던 해커톤이었습니다. 이글이 도움 될만한 독자는 아래와 같습니다. AI 솔루션에 관심이 있는 모든 분들 특히 Classification, Object Detection, Anomaly Detection, XAI 분야에 관심이 있는 분들 MNIST가..
wjdrbs51
'Ai' 태그의 글 목록