불량 검출

이전 포스팅 Task : 해당 프로젝트에서 문제정의에 대한 내용을 다룹니다. DataCentric : 주어진 데이터를 살펴보며, 데이터가 가지는 문제점을 찾아내고 해결방안을 도출하는 과정입니다. 모델의 흐름 불량 검출을 위해 사용한 모델 아키텍처는 위와 같습니다. DataCetric 편에서 말했듯, 널링 내의 요소(찍힘, 밀림, 이중선)와 널링 외의 요소(미압입)로 불량의 기준을 나누었고, 그에 따라 모델의 로직도 2가지로 나뉘게 되었습니다. 이번 포스팅에서는 널링 내의 요소로 찍힘과 밀림, 이중선, 정상을 분류해 내는 내용이 될 것이며, 이 과정에서 GradCAM기법을 사용하여 모델의 신뢰성을 확보하는 내용이 될 것입니다. [널링 내의 요소] Classification 부품 이미지에서 널링 내의 영역을..
wjdrbs51
'불량 검출' 태그의 글 목록